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« EU’'s GDPR

« California’s CCPA

* Virginia’'s VCDPA
Allow individuals to

- Japan’s APP] .
request a copy of their data

« Canada’s PIPEDA

data access request




Identifying & retrieving user-datais hard
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Tried the GDPR data export from Spotify. By default, you
get like 6 JSON files with almost nothing. After many
emails and complaining and a month of waiting, | got a
250MB archive with basically EVERY INTERACTION |

ever did with any Spotify client, all my searches.
Everything.
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How to identify a user’s information?

Need to make application-specific policy choices

Likely Impossible :-(

e.g: TPCH: customers vs suppliers

e.g: Should comments on posts be returned to the author?
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Fully Manual Fully Automated
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How to identify a user’s information?

Likely Impossible :-(

GDPRizer

Mostly Automated Generic
w/ some Manual Customizations Fully Automated

Fully Manual

€

DBAs identity and write
the queries



Talk Outline

« GDPRIizer: Design & Architecture
« Experimental Evaluation
* Prototype in Python

« Tested its accuracy on four applications
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Relationship Graph

Encodes data dependencies
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Relationship Graph

Schema Encodes data dependencies

across tables

Explicit foreign-key

constraints
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Relationship Graph

Schema Queries Encodes data dependencies

across tables

Joins in Queries

SELECT * FROM Paper, Contactlnfo

WHERE

Paper.leadContactld = Contactlnfo.contactld
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Relationship Graph

Schema Queries Encodes data dependencies

across tables
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Relationship Graph

Cues from
Schema Queries 4, irself Encodes data dependencies

across tables

Rich literature on identitying functional

dependencies in data

See survey by Abedjan et al., VLDB 2015
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Relationship Graph of HotCRP
Using only the joins in queries
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Service Data Access Request

. Cues from
Schema Queries 455 itself
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Service Data Access Request

. Cues from
Schema Queries 455 itself
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Service Data Access Request

. Cues from
Schema Queries 455 itself
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Service Data Access Request

. Cues from
Schema Queries 455 itself

Data Access | SELECT * FROM ContactInfo WHERE contactld = 10

Request

SELECT * FROM Paper WHERE leadContactld = 10

SELECT * FROM PaperComment WHERE contactld = 10

............... > Data
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Graph Traversal: Access Request for contactlD =10
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Graph Traversal: Access Request for contactlD =10
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SELECT * FROM ContactInfo WHERE contactld =10
CONTACT INFO

Q1: Extract contact info of user 10

\

/ T~

/ PAPER PAPER CW\IT

|

PAPER REVIEW /

16



Graph Traversal: Access Request for contactlD =10

SELECT * FROM ContactInfo WHERE contactld =10

Q1: Extract contact info of user 10

CONTACT INFO
SELECT * FROM Paper

(CONTACT ID
\
\
WHERE LeadContactld in {10}

papers user 10

Q2: Extract all the
PAPER PAPER CW\IT

wrote
LEAD CONTACT ID PAPER ID / CONTACT ID

/

PAPER REVIEW /

16
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Graph Traversal: Access Request for contactlD =10
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st () Customizations
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Experimental Evaluation

Q1: Does GDPRizer correctly identify user-data ?
Q2: What is the impact of customizations ?
Q3: How many customizations are needed ?

Q4: How does GDPRizer compare to third-party plug-ins ?
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Experimental Evaluation

1. TPC-H
Q1: Does GDPRizer correctly identify user-data ?

2. Lobsters

3. HotCRP

Q2: What is the impact of customizations ?
4. WordPress

Q3: How many customizations are needed ?
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Ground Truth

Wrote our own ground truth queries
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Q1: Does GDPRizer correctly identify user-data?

* Precision: Measures what fraction of what GDPRizer extracted was actually user-data
* Recall: Measures what fraction of the user-data did GDPRizer manage to extract

* F1-Score: Combination of precision and recall

2 100 % %4 extracted only your data 2 100 % %4 extracted all your data

I 0 % | extracted only other people’s data Py 0 % | did not extract any of your data

24
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)2: Whatis the impact of customizations ?

- Similar results for all the |

Precision Recall F1 measure ~ other applications

EERRC/R>C only -+ filtering BN+ pruning

B+ col addition B3+ edge addition



03: How many customizations are needed ?

Total number of customizations

TPC-H (customer) 4
TPC-H (supplier) 7
HotCRP 31
Lobsters 16
WordPress 4
WordPress (w/ plugins) 12
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Impact of different sources of information

« More reliable sources of information
 better relationship graph

 fewer customizations

 [In our experience,

« Foreign Keys in Schema > Joins in Queries > Data itself
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Conclusion J

* GDPRizer : a tool for user-data extraction in legacy databases
* A fully-automated, general solution for legacy systems is unlikely

* Mostly automates user-data identification but still requires some manual input
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