
Encrypted Distributed Hash Tables

Archita Agarwal, Seny Kamara

!2

!3

Distributed
Hash
Tables

!5

DHT

!6

 DHT❖ Decentralised Systems

❖ Distribute (l, v) pairs to
nodes

DHT

!7

 DHT❖ Decentralised Systems

❖ Distribute (l, v) pairs to
nodes

❖ Supports Get(l), Put(l, v)
operations

DHT

!8

 DHT❖ Decentralised Systems

❖ Distribute (l, v) pairs to
nodes

❖ Supports Get(l), Put(l, v)
operations

❖ Overlay network

❖ Routing protocol

DHT

Classic Applications of DHTs
Content Delivery Networks

!9

Classic Applications of DHTs
Content Delivery Networks

!10

P2P File Sharing

Classic Applications of DHTs
Content Delivery Networks

Distributed File Systems

!11

P2P File Sharing

Classic Applications of DHTs
Content Delivery Networks

Distributed File Systems

Key-Value Stores

!12

P2P File Sharing

Classic Applications of DHTs
Content Delivery Networks

Distributed File Systems

P2P File Sharing

Key-Value Stores

NoSQL Databases

!13

Recent Application of DHTs
Content Delivery Networks

Distributed File Systems

P2P File Sharing

Key-Value Stores

NoSQL Databases

Off-Chain Storage in Blockchains

!14

Recent Application of DHTs
Content Delivery Networks

Distributed File Systems

P2P File Sharing

Key-Value Stores

NoSQL Databases

Off-Chain Storage in Blockchains

!15

Encryption

Simple Standard Scheme

!16

Put(l, v)

❖ Apply PRF on label

❖ Encrypt value

❖ Store in DHT

Get(l)

❖ Apply PRF on label

❖ Fetch value from DHT using
pseudorandom label

!17

Q: What is the security of this
standard scheme?

Leakage Preview

!18!18

DHTQ1: What information is learnt by
Adversary about these pairs? Q2: Does it only learn information

about the pairs it stores?

Maybe

Relation to Structured Encryption

!19

Learns about all the
pairs

Leakage Preview

!20!20

DHTQ1: What information is learnt by
Adversary about client’s data/queries? Q2: Does it only learn information

about the pairs it stores?

NO

Infer a good approximation of total
number of pairs!

Maybe
❖ Total pairs adv. holds : m
❖ Total expected pairs : ~ mn/t

❖ if DHTs are load balanced

Example:

Analyzing leakage in Distributed Systems is tricky!

System architecture Security

Formalize the use of end-to-end
encryption in DHTs

!21

!22

Chord DHT

Formalize DHTs

Formalize EDHTs

Syntax

Security

Analyze Standard Scheme

Extend to Transient Setting

Outl
ine

Takeaways & Open Questions

Chord DHT

!23

❖ Address Space : A

❖ Two hash functions:

❖ H1 : hashes node ids to addresses

❖ H2: hashes labels to addresses

❖ server(l): successor(H2(l))

l1

l2

l3

l4

l5

l6

Chord DHT

!24

❖ Address Space : A

❖ Two hash functions:

❖ H1 : hashes node ids to addresses

❖ H2: hashes labels to addresses

❖ server(l): successor(H2(l))

l1

l2

l3

l4

l5

l6❖ route(a1, a2):

❖ logarithmic sized routing tables

❖ logarithmic sized paths

Chord DHT

!25

❖ Address Space : A

❖ Two hash functions:

❖ H1 : hashes node ids to addresses

❖ H2: hashes labels to addresses

❖ server(l): successor(H2(l))

l1

l2

l3

l4

l5

l6❖ route(a1, a2):

❖ logarithmic sized routing tables

❖ logarithmic sized paths

Chord DHT

!26

❖ Address Space : A

❖ Two hash functions:

❖ H1 : hashes node ids to addresses

❖ H2: hashes labels to addresses

❖ server(l): successor(H2(l))
l4

❖ route(a1, a2):

❖ logarithmic sized routing tables

❖ logarithmic sized paths

H2

server(l4)

Allocation param

Determined by
H1

Determined by
H1, H2

Overlay param

Chord: Visible addresses

!27

❖ Vis(N) : set of all addresses s.t. if
H2(l) = a then either

❖ server(l) = N

❖ N ϵ route(a)

Chord: Visible addresses

!28

a

N

❖ Vis(N) : set of all addresses s.t. if
H2(l) = a then either

❖ server(l) = N

❖ N ϵ route(a)

Chord: Visible addresses

!29

a

N

❖ Vis(N) : set of all addresses s.t. if
H2(l) = a then either

❖ server(l) = N

❖ N ϵ route(a)

!30

Chord DHT

Formalize DHTs

Formalize EDHTs

Syntax

Security

Analyze Standard Scheme

Extend to Transient Setting

Outl
ine

Takeaways & Open Questions

Formalizing DHTs

!31

DHT = (Overlay, Alloc, Daemon, Put, Get)

Formalizing DHTs

!32

DHT = (Overlay, Alloc, Daemon, Put, Get)

❖ Executed only once

❖ At the time of setup

❖ Overlay outputs 𝜔

❖ Alloc outputs 𝜓

Formalizing DHTs

!33

DHT = (Overlay, Alloc, Daemon, Put, Get)

❖ Executed only once

❖ At the time of setup

❖ Overlay outputs 𝜔

❖ Alloc outputs 𝜓

❖ Executed by all nodes

❖ all the time

❖ sends/receives messages

❖ stores/retrieves (label,
value) pairs

Formalizing DHTs

!34

DHT = (Overlay, Alloc, Daemon, Put, Get)

❖ Executed only once

❖ At the time of setup

❖ Overlay outputs 𝜔

❖ Alloc outputs 𝜓

❖ Executed by all nodes

❖ all the time

❖ sends/receives messages

❖ stores/retrieves (label,
value) pairs

❖ Executed by client

❖ to store/retrieve (label/
value) pair in/from
network

Formalizing DHTs

!35

DHT = (Overlay, Alloc, Daemon, Put, Get)

❖ Executed only once

❖ At the time of setup

❖ Overlay outputs 𝜔

❖ Alloc outputs 𝜓

❖ Executed by all nodes

❖ all the time

❖ sends/receives messages

❖ stores/retrieves (label,
value) pairs

❖ Executed by client

❖ to store/retrieve (label/
value) pair in/from
network

❖ addr𝜔 : N → A

❖ server𝜔,𝜓 : L → A

❖ route𝜔 : A X A → 2A

!36

Properties of DHTs

!37

Properties of DHTs

P1: Balance P2: Non-committing allocations

.

!38

P1: Balance

❖ Overlay 𝜔 is ε-balanced if ∀ labels l, and
all nodes N

❖ Pr[server(l) ϵ Vis(N)] ≤ ε

❖ Prob over choice of 𝜓

❖ A DHT is (ε, δ)-balanced if

❖ Pr[𝜔 is ε-balanced] ≥ 1 - δ

❖ Prob over choice of 𝜔

Prob of a label being visible
to a node is bounded

w/ prob 1-δ the sampled
overlay is balanced

❖ Pr [server(l) = N’]
❖ Pr [N on log sized path to N’]

 Pr[server(l) ϵ Vis(N)]

= Pr[server(l) = N] + Pr[N ϵ route(server(l))]

!39

P1: Balance for Chord

∝ length of arc of N

with high prob max arc ≤ (4 |A|log n)/n

N

!40

 Chord is (ε, δ)-balanced for
 ε = (4 log n) + 4n log2n and δ = 1/n

n |A|
Th :

Balance of Chord

❖ If |A| = 2512 ⇒ n2 log n < |A|, even for n = 2250 ⇒ ε = O (log n / n)

P2: Non-committing allocations

!41

❖ be able to change/program 𝜓

❖ given a label l and an address a

❖ set 𝜓(l) = a

!42

Chord DHT

Formalize DHTs

Formalize EDHTs

Syntax

Security

Analyze Standard Scheme

Extend to Transient Setting

Outl
ine

Takeaways & Open Questions

Formalizing EDHTs : Syntax

!43

EDHT = (Gen, Overlay, Alloc, Daemon, Put, Get)

Formalizing EDHTs : Syntax

!44

EDHT = (Gen, Overlay, Alloc, Daemon, Put, Get)

Same as before

Formalizing EDHTs : Syntax

!45

EDHT = (Gen, Overlay, Alloc, Daemon, Put, Get)

❖ Executed by Client

❖ Generates reqd. keys for client

Same as before

EDHTs Security

!46

Real Ideal

Executes
Overlay(),

Alloc()

op

Z
T

A

C

I

Put(l, v): Sets DX[l] := v

Get(l): Outputs DX[l]

EDHTs Security

!47

Real Ideal

Executes
Overlay(),

Alloc()

op

F

Z
T

A

C C

I

op op

Real Ideal≈

I L(DX, op)

!48

Chord DHT

Formalize DHTs

Formalize EDHTs

Syntax

Security

Analyze Standard Scheme

Extend to Transient Setting

Outl
ine

Takeaways & Open Questions

Standard Scheme : Construction

!49

Put(K, l, v)

❖ K = (K1, K2)

❖ t = FK1(l)

❖ e = SKE.EncK2(v)

❖ DHT.Put(t, e)

Get(K, l)

❖ K = (K1, K2)

❖ t = FK1(l)

❖ e ← DHT.Get (t)

❖ v ← SKE.DecK2(e)

Gen(1k)

❖ Sample K1← {0, 1}k

❖ K2 ← SKE.Gen(1k)

❖ Output (K1, K2)

Understanding Leakage

!50

𝜔1 𝜔2 𝜔3 𝜔4

!51

Q: Is there any gain over STE leakage?

YES
𝜔

Very unlikely*

!52

Understanding Leakage

Very unlikely*DHT is (ε, δ)-balanced if

Pr[𝜔 is ε-balanced] ≥ 1 - δ
Sampling a “bad”
overlay is unlikelyPr[label being visible to a node] ≤ ε

L :
leaks qeq(l) with probability min(1, t·ε)

probabilistic

affected by balancing properties of DHT

Standard Scheme: Security

!53

If DHT is (ε, δ)-balanced and
has non-committing overlays, then
EDHT is Lε-secure
with prob at least 1 - δ - negl(k)

Th :

Challenges in Proof

!54

L 𝜔

needs to generate leakages
compatible with 𝜔

Two options:

❖ leak all the queries

❖ L generates 𝜔

!55

Chord DHT

Formalize DHTs

Formalize EDHTs

Syntax

Security

Analyze Standard Scheme

Extend to Transient Setting

Outl
ine

Takeaways & Open Questions

!56

Transient Setting

Nodes can leave/enter the network

Syntax

!57

DHT = (Overlay, Alloc, Daemon, Put, Get, Leave, Join)

EDHT = (Gen, Overlay, Alloc, Daemon, Put, Get, Leave, Join)

❖ Run by node wishing to
leave the network

❖ Run by node wishing to
join the network

Leave/Join in Chord

!58

Put(l, v): Sets DX[l] := v

Get(l): Outputs DX[l]

!59

Real Ideal

Executes
Overlay(),

Alloc()

op

F

Z
T

A

C C

I

op op

Real Ideal≈

I L(DX, op)

Security : Transient EDHTs

Z can now also issue leave/join
requests

!60

Properties of DHTs

P1: Balance

.

P2: Non-committing allocations

Same as before

Stronger notion

❖ A DHT is (ε, δ)-balanced if for all active
nodes C

❖ Pr[⋀(𝜔, C) is ε-balanced] ≥ 1 - δ

w/ prob 1-δ the sampled
overlay is balanced for all

nodes C

Understanding Leakage

!61

❖ Additional pairs become visible
during leave/join

L 𝜔

which pairs to
leak??

leaks qeq(l) of all the previous pairs

Transient Standard Scheme: Security

!62

If transient DHT is (ε, δ)-balanced and
has non-committing overlays, then
transient EDHT is Lε-secure
with prob at least 1 - δ - negl(k)

Th :

!63

Chord DHT

Formalize DHTs

Formalize EDHTs

Syntax

Security

Analyze Standard Scheme

Extend to Transient Setting

Outl
ine

Takeaways & Open Questions

!64

❖ Expected Leakage Analysis

❖ Earlier : leakage functions were deterministic

❖ Now : probabilistic

❖ Co-design distributed systems with reqd. crypto

❖ Building secure distributed systems can be tricky

❖ Intuitions are not always right

❖ Distributing data can help in leakage suppression

!65

Open Questions

❖ Tighter analysis of Transient Chord

❖ Study of (ε, δ) of other DHTs

❖ Kademlia, Koorde

❖ Design other EDHTs

❖ Security in UC setting

