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Encryption



Simple Standard Scheme
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Put(l, v)

❖ Apply PRF on label

❖ Encrypt value

❖ Store in DHT

Get(l)

❖ Apply PRF on label

❖ Fetch value from DHT using 
pseudorandom label



!17

Q: What is the security of this 
standard scheme?



Leakage Preview
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DHTQ1: What information is learnt by 
Adversary about these pairs? Q2: Does it only learn information 

about the pairs it stores?

Maybe



Relation to Structured Encryption
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Learns about all the 
pairs



Leakage Preview
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DHTQ1: What information is learnt by 
Adversary about client’s data/queries? Q2: Does it only learn information 

about the pairs it stores?

NO

Infer a good approximation of total 
number of pairs!

Maybe
❖ Total pairs adv. holds : m
❖ Total expected pairs : ~ mn/t 

❖ if DHTs are load balanced 

Example:

Analyzing leakage in Distributed Systems is tricky!

System architecture Security



Formalize the use of end-to-end 
encryption in DHTs
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Chord DHT

Formalize DHTs

Formalize EDHTs

Syntax
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Extend to Transient Setting
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ine
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❖ Address Space : A

❖ Two hash functions:

❖ H1 : hashes node ids to addresses

❖ H2: hashes labels to addresses

❖ server(l): successor(H2(l))

l1

l2

l3

l4

l5

l6
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Chord DHT
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❖ Address Space : A

❖ Two hash functions:

❖ H1 : hashes node ids to addresses

❖ H2: hashes labels to addresses

❖ server(l): successor(H2(l))
l4

❖ route(a1, a2): 

❖ logarithmic sized routing tables 

❖ logarithmic sized paths

H2

server(l4)

Allocation param

Determined by 
H1

Determined by 
H1, H2

Overlay param



Chord: Visible addresses
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a

N

❖ Vis(N) : set of all addresses s.t. if 
H2(l) = a then either

❖ server(l) = N

❖ N ϵ route(a)
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Formalizing DHTs
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DHT = (Overlay, Alloc, Daemon, Put, Get)

❖ Executed only once

❖ At the time of setup

❖ Overlay outputs 𝜔

❖ Alloc outputs 𝜓

❖ Executed by all nodes

❖ all the time

❖ sends/receives messages

❖ stores/retrieves (label, 
value) pairs

❖ Executed by client

❖ to store/retrieve (label/
value) pair in/from 
network

❖ addr𝜔 : N → A

❖ server𝜔,𝜓 : L → A

❖ route𝜔 : A X A → 2A
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P1: Balance P2: Non-committing allocations

.
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P1: Balance

❖ Overlay 𝜔 is ε-balanced if ∀ labels l, and 
all nodes N

❖ Pr[server(l) ϵ Vis(N)] ≤ ε

❖ Prob over choice of 𝜓

❖ A DHT is (ε, δ)-balanced if 

❖ Pr[ 𝜔 is ε-balanced] ≥ 1 - δ

❖ Prob over choice of 𝜔

Prob of a label being visible 
to a node is bounded

w/ prob 1-δ the sampled 
overlay is balanced



❖ Pr [server(l) = N’]
❖ Pr [N on log sized path to N’]

    Pr[server(l) ϵ Vis(N)] 

= Pr[server(l) = N] + Pr[N ϵ route(server(l))]
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P1: Balance for Chord

∝ length of arc of N

with high prob max arc ≤ (4 |A|log n)/n

N
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       Chord is (ε, δ)-balanced for 
      ε = (4 log n) + 4n log2n     and      δ = 1/n 

n |A|
Th :

Balance of Chord

❖ If |A| = 2512  ⇒  n2 log n < |A|, even for n = 2250 ⇒ ε = O ( log n / n )



P2: Non-committing allocations
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❖ be able to change/program 𝜓

❖ given a label l and an address a 

❖ set 𝜓(l)  = a
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Formalizing EDHTs : Syntax
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EDHT = (Gen, Overlay, Alloc, Daemon, Put, Get)

❖ Executed by Client 

❖ Generates reqd. keys for client

Same as before



EDHTs Security
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Real Ideal

Executes 
Overlay(), 

Alloc()

op

Z
T

A

C

I



Put(l, v): Sets DX[l] := v

Get(l): Outputs DX[l]

EDHTs Security
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Real Ideal

Executes 
Overlay(), 

Alloc()

op

F

Z
T

A

C C

I

op op

Real Ideal≈

I L(DX, op)
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Standard Scheme : Construction
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Put(K, l, v)

❖ K = (K1, K2)

❖ t = FK1(l)

❖ e = SKE.EncK2(v)

❖ DHT.Put(t, e)

Get(K, l)

❖ K = (K1, K2)

❖ t = FK1(l)

❖ e ← DHT.Get (t)

❖ v ← SKE.DecK2(e)

Gen(1k)

❖ Sample K1← {0, 1}k

❖ K2 ← SKE.Gen(1k)

❖ Output (K1, K2)



Understanding Leakage
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𝜔1 𝜔2 𝜔3 𝜔4



!51

Q: Is there any gain over STE leakage?

YES
𝜔

Very unlikely*
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Understanding Leakage

Very unlikely*DHT is (ε, δ)-balanced if

Pr[ 𝜔 is ε-balanced] ≥ 1 - δ
Sampling a “bad” 
overlay is unlikelyPr[label being visible to a node] ≤ ε

L :
leaks qeq(l) with probability min(1, t·ε)

probabilistic

affected by balancing properties of DHT



Standard Scheme: Security
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If DHT is (ε, δ)-balanced  and 
has non-committing overlays, then 
EDHT is Lε-secure 
with prob at least 1 - δ - negl(k)

Th :



Challenges in Proof
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L 𝜔

needs to generate leakages 
compatible with 𝜔 

Two options:

❖ leak all the queries

❖ L generates 𝜔
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Transient Setting

Nodes can leave/enter the network



Syntax
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DHT = (Overlay, Alloc, Daemon, Put, Get, Leave, Join)

EDHT = (Gen, Overlay, Alloc, Daemon, Put, Get, Leave, Join)

❖ Run by node wishing to 
leave the network

❖ Run by node wishing to 
join the network



Leave/Join in Chord
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Put(l, v): Sets DX[l] := v

Get(l): Outputs DX[l]
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Real Ideal

Executes 
Overlay(), 

Alloc()

op

F

Z
T

A

C C

I

op op

Real Ideal≈

I L(DX, op)

Security : Transient EDHTs

Z can now also issue leave/join 
requests
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Properties of DHTs

P1: Balance

.

P2: Non-committing allocations

Same as before

Stronger notion

❖ A DHT is (ε, δ)-balanced if for all active 
nodes C

❖ Pr[⋀(𝜔, C) is ε-balanced] ≥ 1 - δ

w/ prob 1-δ the sampled 
overlay is balanced for all 

nodes C



Understanding Leakage 
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❖ Additional pairs become visible 
during leave/join

L 𝜔

which pairs to 
leak??

leaks qeq(l) of all the previous pairs



Transient Standard Scheme: Security
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If transient DHT is (ε, δ)-balanced  and 
has non-committing overlays, then 
transient EDHT is Lε-secure 
with prob at least 1 - δ - negl(k)

Th :
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Chord DHT

Formalize DHTs

Formalize EDHTs
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❖ Expected Leakage Analysis 

❖ Earlier : leakage functions were deterministic

❖ Now :  probabilistic

❖ Co-design distributed systems with reqd. crypto

❖ Building secure distributed systems can be tricky

❖ Intuitions are not always right

❖ Distributing data can help in leakage suppression
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Open Questions

❖ Tighter analysis of Transient Chord 

❖ Study  of (ε, δ) of other DHTs

❖ Kademlia, Koorde

❖ Design other EDHTs

❖ Security in UC setting




