Distributed and Parallel Algorithms for Set Cover Problems with Small Neighborhood Covers

Archita Agarwal, Venkatesan T. Chakaravarthy, Anamitra R. Choudhury, Sambuddha Roy, Yogish Sabharwal

IBM Research - India, New Delhi

Archita Agarwal (IBM Research)

Set Cover problems with SNC property

FSTTCS, December 2013

Set Cover

- Input: Set system $\langle E, \mathcal{S} \rangle$
- *E* : *e*₁, *e*₂, *e*₃, . . . , *e*_m
- $S: \{\dots\}, \{\dots\}, \{\dots\}, \{\dots\}, \dots, \{\dots\}$ $c(S_1) \ c(S_2) \ c(S_3) \ c(S_n)$
- Output: *R* ⊆ *S* having minimum cost such that all the *e* ∈ *E* are covered

12 N 4 12 N

Prior Work

Sequential setting

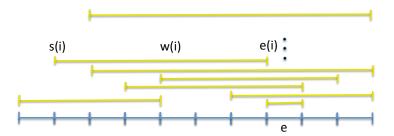
- $O(\log \Delta)$ approximation ratio, Δ is the maximum cardinality of the sets in $\mathcal S$
- f approximation ratio, where f is the *frequency parameter* which is the maximum number of sets of S that any element belongs to
- Ω(log m)-inapproximable
- Parallel setting
 - [RV '98]O(log m) approximation ratio
 - [KVY '94] $O(f + \epsilon)$ approximation ratio

Distributed setting

- [Kuhn et al. '06] $O(\log \Delta)$ approximation ratio
- [KY '11] f approximation ratio
- both the above algorithms run in $O(\log m)$ communication rounds

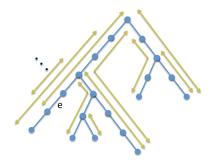
Interval Cover

- Non constant f but
 - constant factor by Primal Dual
 - optimal by DP



Tree Cover

- Non constant f but
 - constant factor by Primal Dual
 - optimal by DP



Other Problems with non constant f

- Priority Interval Cover
 - optimal by Primal Dual
- Bag Interval Cover (NP Hard)
 - constant factor by Primal Dual

같아. 김 같

- Introduction of SNC property for a class of set cover problems
 - A wide range of problems fall under this framework
- For set cover problems with non-constant *f* but satisfying the SNC property, we give constant factor approximation algorithms in
 - sequential setting,
 - parallel setting, and
 - distributed setting

Archita Agarwal (IBM Research)

E N 4 E N

SNC property

•
$$E: e_1, e_2, e_3, \dots, e_m$$

• $S: \{\dots\}, \{\dots\}, \{\dots\}, \dots, \{\dots\}$

- The neighborhood of an element e ∈ E is the set of all the elements with which it shares some set in S
 - $S: \{e_1, e_2\}, \{e_1, e_2, e_3\}, \{e_1, e_4, e_6\}, \{e_2, e_5\}$
 - $S: \{e_1, e_2\}, \{e_1, e_2, e_3\}, \{e_1, e_4, e_6\}, \{e_2, e_5\}$
 - neighborhood(e_1): { e_1, e_2, e_3, e_4, e_6 }
 - $S: \{e_1, e_2\}, \{e_1, e_2, e_3\}, \{e_1, e_4, e_6\}, \{e_2, e_5\}$ • neighborhood $(e_2): \{e_1, e_2, e_3, e_5\}$
- An element is a $\tau\text{-}\mathsf{SNC}$ element if its neighborhood can be covered by atmost τ sets
 - $e_1 \rightarrow 3\text{-SNC}$
 - $e_2 \rightarrow 2\text{-SNC}$

SNC property

- For any subset X, the set system restricted to X is defined as ⟨X, S'⟩ where S' = {S ∩ X : S ∈ S}
- For a τ , if any restriction of the set system contains atleast one τ -SNC element, we call the set system as τ -SNC set system

Archita Agarwal (IBM Research)

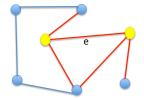
Set Cover problems with SNC property

FSTTCS, December 2013

12 N 4 12 N

Examples: Vertex Cover : 2-SNC

• Each edge (element) is incident upon 2 vertices (sets)

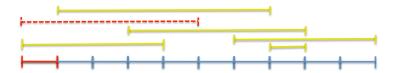


Set Cover problems with SNC property

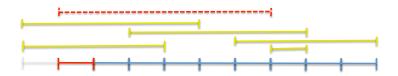
FSTTCS, December 2013

013 10 / 47

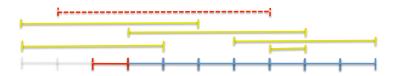
 The leftmost element is a 1-SNC element – Its neighborhood can be covered by the interval spanning it and extending most towards the right



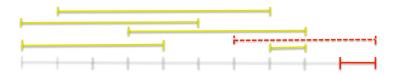
• After removing this 1-SNC element, we can find another 1-SNC element



• After removing this 1-SNC element, we can find another 1-SNC element



• Only after we have removed the leftmost 1-SNC element, we find a new 1-SNC element



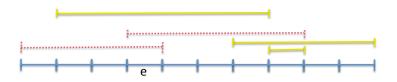
Archita Agarwal (IBM Research)

Set Cover problems with SNC property

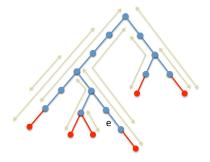
FSTTCS, December 2013

- 4 E

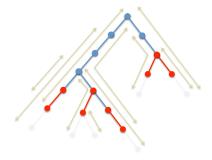
- Can be viewed as a 2-SNC set system as well
- The neighborhood of any timeslot (element) can be covered by 2 intervals (sets) the one extending most towards the left and the one extending most towards the right



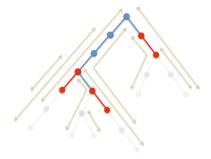
• All the leaves are 1-SNC elements – Their neighborhood can be covered by the interval extending most towards the root



• Any restriction of a tree is a tree in itself. After removing all the 1-SNC element, we can find other 1-SNC elements

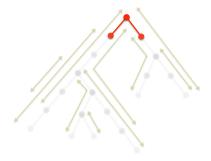


• Any restriction of a tree is a tree in itself. After removing all the 1-SNC element, we can find other 1-SNC elements



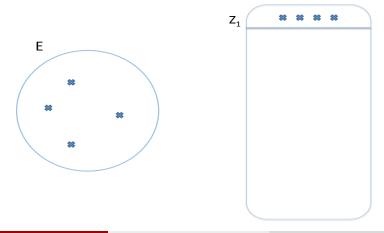
Set Cover problems with SNC property

• Any restriction of a tree is a tree in itself. After removing all the 1-SNC element, we can find other 1-SNC elements



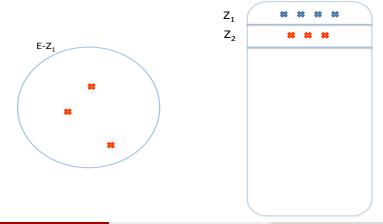
Layer Decomposition

• In the given set system, find all τ -SNC elements. Put them in layer Z_1



Layer Decomposition

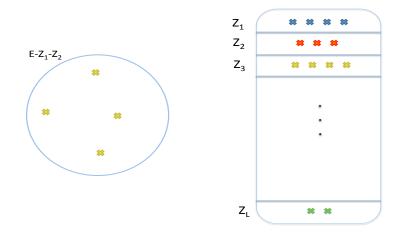
• Restrict the set system to $E - Z_1$. Find all τ -SNC elements in the restriction



FSTTCS, December 2013

Layer Decomposition

• Continue till all the elements belong to some layer Z_k



FSTTCS, December 2013

Layer Decomposition: Length

Interval Cover

- 1-SNC $\rightarrow L = \Omega(m)$
- 2-SNC $\rightarrow L = 1$

Layer Decomposition: Length

- Interval Cover
 - 1-SNC $\rightarrow L = \Omega(m)$
 - 2-SNC $\rightarrow L = 1$
- Tree Cover
 - 1-SNC $\rightarrow L = \Omega(m)$
 - Theorem: For a 2-SNC tree cover system, the number of layers $L = O(\log m)$

FSTTCS, December 2013

A B K A B K

There exists a procedure for computing the layer decomposition of a given $\tau\text{-}\mathsf{SNC}$ set system.

- In the sequential setting, it can be implemented in polynomial time.
- In the distributed setting, it can be implemented in O(L) communication rounds.
- In the parallel setting, the algorithm takes *L* iterations each of which can be implemented in NC.
- For parallel and distributed setting the decomposition length (L) should be $O(\log m)$

A B M A B M

Our Results

- au sequential approximation algorithm for any au-SNC set system
- $8\tau^2$ parallel approximation algorithm for a τ -SNC set system of logarithmic length
- τ distributed approximation algorithm for a $\tau\text{-}\mathsf{SNC}$ set system of logarithmic length

Archita Agarwal (IBM Research)

12 N 4 12 N

Primal Dual Framework

Primalmin $\sum_{S \in S} x(S) \cdot w(S)$ $\sum_{S \in \mathcal{S}: e \in S} x(S) \geq 1$ $(\forall e \in E)$ $x(S) \geq 0$ $(\forall S \in S)$

Dual

$$\begin{array}{lll} \max & \displaystyle\sum_{e \in E} \alpha(e) \\ & \displaystyle\sum_{e \in S} \alpha(e) & \leq & w(S) \quad (\forall S \in \mathcal{S}) \\ & \displaystyle\alpha(e) & \geq & 0 \qquad (\forall e \in E) \end{array}$$

Archita Agarwal (IBM Research)

Set Cover problems with SNC property

Primal Dual Framework

- A primal-dual algorithm would generally have
 - Forward Phase
 - Reverse Delete Phase

Forward Phase

- Increase the dual variables
- If some constraint becomes tight, pick the variable corresponding to that constraint in the primal solution
- Output $\langle {\cal A},\alpha\rangle,$ where ${\cal A}$ and α are the primal and dual solutions respectively

• Reverse Delete Phase

- Take the primal solution A produced in the forward phase and *drop* redundant items from it
- Output $\langle B, \alpha \rangle$, where $B \subseteq A$

Primal Dual Framework: Approx. Complementary Slackness Conditions

We say that the pair ⟨A, α⟩ is λ-maximal, if for any S ∈ A, the corresponding dual constraint is approximately tight:

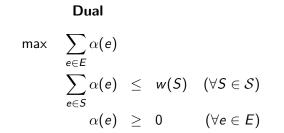
$$\sum_{e \in S} \alpha(e) \ge \lambda \cdot w(S)$$

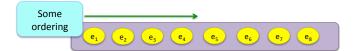
• We say that the pair $\langle B, \alpha \rangle$ satisfies the primal slackness conditions approximately, if for any $e \in E$, if $\alpha(e) > 0$ then

$$|\{S \in B : S \text{ covers } e\}| \le \mu.$$

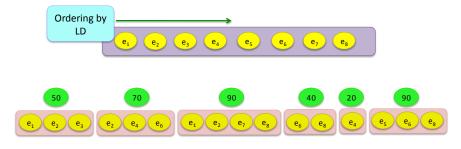
• The overall factor achieved is $\frac{1}{\lambda} \cdot \mu$

Primal Dual Framework: Forward Phase





- Arrange the elements according to layer decomposition order
- Scan them from left to right



$$\sum_{e \in S} \alpha(e) \leq w(S) \quad (\forall S \in S)$$

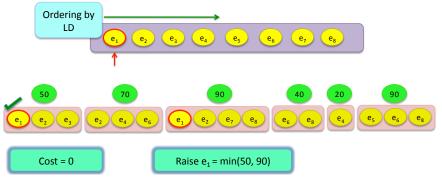
Archita Agarwal (IBM Research)

Set Cover problems with SNC property

FSTTCS, December 2013

A B A A B A

• Raise the first uncovered element to the maximum possible cost



$$\sum_{e\in S} \alpha(e) \leq w(S) \quad (\forall S \in S)$$

Archita Agarwal (IBM Research)

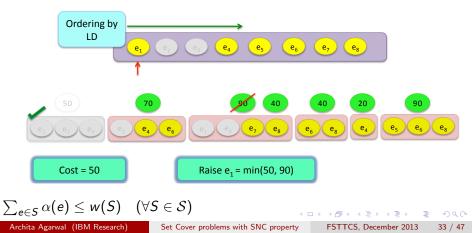
Set Cover problems with SNC property

FSTTCS, December 2013

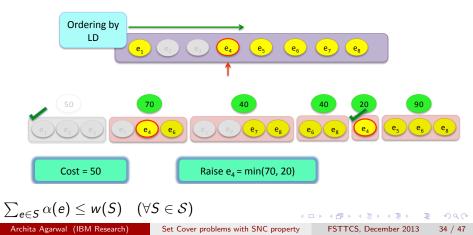
★ 3 > < 3 >

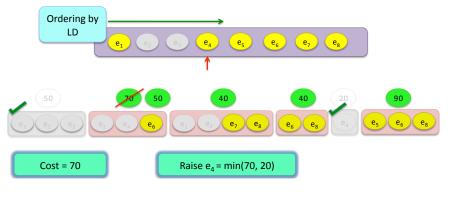
3

- Include the *tight* set in the solution
- Remove the elements that got *freely* covered by this picked up set



• Look for the next uncovered element in the ordering and repeat the process





$$\sum_{e\in S} \alpha(e) \leq w(S) \quad (\forall S \in S)$$

Archita Agarwal (IBM Research)

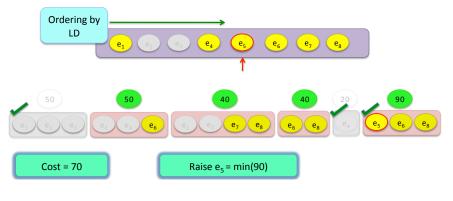
Set Cover problems with SNC property

FSTTCS, December 2013

A B A A B A

3

35 / 47



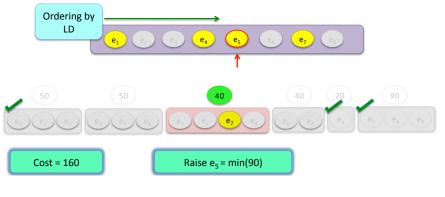
$$\sum_{e\in S} \alpha(e) \leq w(S) \quad (\forall S \in S)$$

Archita Agarwal (IBM Research)

FSTTCS, December 2013

A B F A B F

36 / 47



$$\sum_{e\in S} \alpha(e) \leq w(S) \quad (\forall S \in S)$$

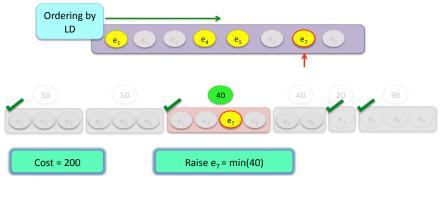
Archita Agarwal (IBM Research)

Set Cover problems with SNC property

FSTTCS, December 2013

A B F A B F

37 / 47



$$\sum_{e\in S} \alpha(e) \leq w(S) \quad (\forall S \in S)$$

Archita Agarwal (IBM Research)

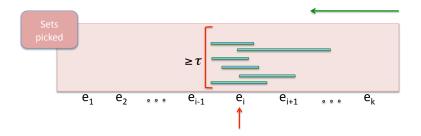
FSTTCS, December 2013

A B F A B F

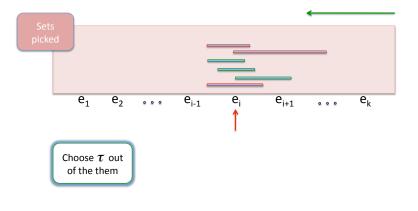
38 / 47

- Only look at the elements *raised* in the forward phase
- Arrange them in the order they were raised and scan them in the reverse direction

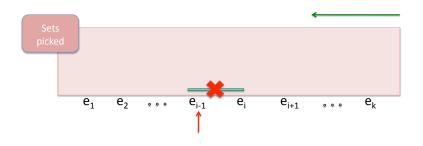
• It's possible that more than τ sets are spanning an element raised in the forward phase



- Bad!! Compress them!!
- Choose at most au out of them



- After the compression, can we still guarantee coverage?
- Elements to its left are not dependent on it for their coverage.
- No set picked up in *i* 1 iterations can span *e_i* else *e_i* wouldn't have been raised in the forward phase



- What about the elements to its right?
- e_i is τ SNC in the restriction to its right (Layer decomposition)
- $\lambda = 1$, and
- $\mu = \tau$. Hence, we have $O(\tau)$ approximation algorithm

Archita Agarwal (IBM Research)

Set Cover problems with SNC property

FSTTCS, December 2013

(B)

Parallel Algorithm: Comparison with [KVY '94]

Constant f sequential setting

- Raise one variable at a time
- Produce maximal solutions $(\lambda = 1)$
- # of iterations = $\Omega(m)$

[KVY'94] parallel setting

- Raise multiple variables simultaneously
- Produce near maximal solutions ($\lambda = 1 \epsilon$)
- # of iterations = $O(\frac{1}{\epsilon}f \log m)$

Our Results in Parallel setting

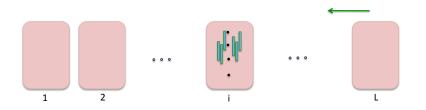
• Go according to layer decomposition. Inside each layer,

- Raise multiple variables simultaneously
- Produce (1/8) maximal solutions (worse than [KVY])
- # of iterations $O(\log m)$ (got rid of f)

• Total # of iterations $O(L \log m)$

Parallel Algorithm: Reverse Delete

- Complicated!
- $\bullet \ \mu = \tau^2$
- # of iterations $O(L^2)$



Open problems in parallel setting

- Approximation Ratio: ${\it O}(au^2) o {\it O}(au)$
- # of iterations: $O(L^2) \rightarrow O(L)$
- Find algorithms for τ -SNC systems beyond logarithmic length

FSTTCS, December 2013

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Thank you!

Archita Agarwal (IBM Research)

Set Cover problems with SNC property

✓ □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

■ ■ つへの er 2013 47 / 47